从位图到布隆过滤器,C#实现

栏目:云星空知识作者:金蝶来源:金蝶云社区发布:2024-09-16浏览:1

从位图到布隆过滤器,C#实现

从位图到布隆过滤器,C#实现

前言

本文将以 C# 语言来实现一个简单的布隆过滤器,为简化说明,设计得很简单,仅供学习使用。

感谢@时总百忙之中的指导。

布隆过滤器简介

布隆过滤器(Bloom filter)是一种特殊的 Hash Table,能够以较小的存储空间较快地判断出数据是否存在。常用于允许一定误判率的数据过滤及防止缓存击穿及等场景。

相较于 .NET 中的 HashSet 这样传统的 Hash Table,存在以下的优劣势。

优势:

  1. 占用的存储空间较小。不需要像 HashSet 一样存储 Key 的原始数据。

劣势:

  1. 存在误判率,过滤器认为不存在的数据一定不存在,但是认为存在的数据不一定真的存在。这个和布隆过滤器的实现方式有关。

  2. 不支持数据的删除,下文会讲为什么不支持删除。

数据的存储#

布隆过滤器的数据保存在 位图(Bitmap)上。Bitmap 简而言之是二进制位(bit)的数组。Hash Table 保存每个元素的位置,我们称之为 桶(bucket), Bitmap 上的每一位就是布隆过滤器的 bucket。

布隆过滤器的每一个 bucket 只能存储 0 或 1。数据插入时,布隆过滤器会通过 Hash 函数计算出插入的 key 对应的 bucket,并将该 bucket 设置为 1。

查询时,再次根据 Hash 函数计算出 key 对应的 bucket,如果 bucket 的值是 1,则认为 key 存在。

Hash 冲突的解决方案#

布隆过滤器使用了 Hash 函数,自然也逃不过 Hash 冲突的问题。对布隆过滤器而言,发生 Hash 冲突也就意味着会发生误判。

传统 Hash 算法解决 Hash 冲突的方式有 开放定址法、链表法等。而布隆过滤器解决 Hash 冲突的方式比较特殊,它使用了多个 Hash 函数来解决冲突问题。

下图中插入布隆过滤器的 Bar 和 Baz 经过 Hash1 计算出的位置是同一个,但 Hash2 计算出的位置是不一样的,Bar 和 Baz 得以区分。

即使布隆过滤器使用了这种方式来解决 Hash冲突,冲突的可能性依旧存在,如下图所示:

由于布隆过滤器不保留插入的 Key 的原始值,Hash 冲突是无法避免的。我们只能通过增加 Hash 函数的数量来减少冲突的概率,也就是减少误判率。

假设布隆过滤器有 m 个 bucket,包含 k 个哈希函数,已经插入了 n 个 key。经数学推导可得误判率 ε 的公式如下:

具体推断过程可参考 https://en.wikipedia.org/wiki/Bloom_filter。

布隆过滤器的误判概率大致和 已经插入的 key 的数量 n 成正比,和 hash函数数量 k、bucket 数 m 成反比。为了减少误判率,我们可以增加 m 或 增加 k,增加 m 意味着过滤器占用存储空间会增加,增加 k 则意味着插入和查询时的效率会降低。

为什么布隆过滤器不支持删除#

布隆过滤器通过多个 Hash 函数来解决冲突的设计,也意味着多着插入元素可能会共享同样的 bucket,删掉一个元素的同时,也会被其他元素的一部分 bucket 给删掉。因此基于 Bitmap 实现的布隆过滤器是不支持删除的。

用 C# 实现 Bitmap

在实现布隆过滤器之前,我们首先要实现一个 Bitmap。

在 C# 中,我们并不能直接用 bit 作为最小的数据存储单元,但借助位运算的话,我们就可以基于其他数据类型来表示,比如 byte。下文用 byte 作为例子来描述 Bitmap 的实现,但不仅限于 byte,int、long 等等也是可以的。

位运算#

下面是 C# 中位运算的简单介绍:

符号描述运算规则
&两个位都为1时,结果才为1
|两个位都为0时,结果才为0
^异或两个位相同为0,相异为1
~取反0变1,1变0
<<左移各二进位全部左移若干位,低位补0
>>右移各二进位全部右移若干位,高位补0

一般来说,我们要进行位运算计算的数据通常都是由多个二进位组成的。对两个数字使用 &|^ 这三个运算符时,需要对齐两个数字的右边,一位位地进行计算。

// 0b 代表值用二进制表示数字short a =                     0b0111111111111001;byte  b =                            0b011111111;short c = (short)(a & b);  // 0b0111111111111001short d = (short)(a | b);  // 0b0111111111111111short e = (short)(a ^ b);  // 0b0000000000000110byte  f = (byte)~b;                  0b011111111;short g = (short)(b << 1); // 0b0000000111111111;short h = (short)(b >> 1); // 0b0000000001111111;

利用位运算创建 Bitmap#

借助 byte 实现 Bitmap,也就是要能够修改和查看 byte 上的每一个 bit 的值,同时,修改要能够实现幂等。

  1. 指定位设置成 1
    按前面说的位运算的规则,是不能够单独修改 bit 序列中某一位的。位运算需要从右到左一对对计算。
    使用 | 可以实现这个功能。假设我们要改变从右开始下标为 3(初始位置0) 的 bit 的值,则需要准备一个该位置为 1,其他位置都是 0 的 bit 序列,与要改变的 bit 序列进行 | 运算。

// 为了将 a 的右边数起第 3 位改成 1,需要准备一个 bbyte a =            0b010100010;byte b = 1 << 3; // 0b000001000a |= b;          // 0b010101010
  1. 指定位设置成 0
    和设置成 1 正好相反,需要准备一个指定位置为 0,其他位置都是 1 的 bit 序列,与要改变的 bit 序列进行 & 运算。

byte a =            0b010101010;byte b = 1 << 3; // 0b000001000b = ~b;          // 0b111110111a &= b;          // 0b010100010
  1. 查看指定位的值
    利用 & 运算符,只要计算结果不为 0,就代表指定位置的值为 1。

byte a =            0b010101010;byte b = 1 << 3; // 0b000001000;a &= b;          // 0b000001000;

了解了基本的操作之后,我们把数据存储到 byte 数组上。

class Bitmap{    private readonly byte[] _bytes;    private readonly long _capacity;    public Bitmap(long capacity)    {        _capacity = capacity;        _bytes = new byte[_capacity / 8 + 1];    }    public long Capacity => _capacity;    public void Set(long index)    {        if (index >= _capacity)        {            throw new IndexOutOfRangeException();        }        // 计算出数据存在第几个 byte 上        long byteIndex = index / 8;        // 计算出数据存在第几个 bit 上        int bitIndex = (int)(index % 8);        _bytes[byteIndex] |= (byte)(1 << bitIndex);    }    public void Remove(long index)    {        if (index >= _capacity)        {            throw new IndexOutOfRangeException();        }        long byteIndex = index / 8;        int bitIndex = (int)(index % 8);        _bytes[byteIndex] &= (byte)~(1 << bitIndex);    }    public bool Get(long index)    {        if (index >= _capacity)        {            throw new IndexOutOfRangeException();        }        long byteIndex = index / 8;        int bitIndex = (int)(index % 8);        return (_bytes[byteIndex] & (byte)(1 << bitIndex)) != 0;    }}

用 C# 实现 布隆过滤器

有了 Bitmap,我们再把 Hash 函数的实现准备好,一个简单的布隆过滤器就可以完成了。这里,我们参考 guava 这个 java 库的实现。

https://github.com/google/guava/blob/master/guava/src/com/google/common/hash/BloomFilter.java

MurmurHash3 的使用#

我们使用和 guava 一样的 MurmurHash3 作为 Hash 函数的实现。

下面是笔者在 github 上找到的一个可用实现。

https://github.com/darrenkopp/murmurhash-net

使用这个库,我们可以将任意长的 byte 数组转换成 128 位的二进制位,也就是 16 byte。

byte[] data = Guid.NewGuid().ToByteArray(); 
// returns a 128-bit algorithm using "unsafe" code with default seedHashAlgorithm murmur128 = MurmurHash.Create128(managed: false);byte[] hash = murmur128.ComputeHash(data);

将任意类型的 key 转换为 byte 数组#

Funnel 与 Sink 的定义#

我们需要将各种类型 key 转换成 MurmurHash 能够直接处理的 byte 数组。为此我们参考 guava 引入下面两个概念:

  1. Funnel:将各类数据转换成 byte 数组,包括 int、bool、string 等built-in 类型及自定义的复杂类型。

  2. Sink:Funnel 的核心组件,作为数据的缓冲区。Funnel 在将自定义的复杂类型实例转换成 byte 数组时,就需要将数据拆解分批写入 sink。

Funnel 可以定义成如下的委托,接受原始值,并将其写入 sink 中。

delegate void Funnel<in T>(T from, ISink sink);

Sink 将不同类型的数据转换成 byte 数组并汇总到一起。

interface ISink{    ISink PutByte(byte b);        ISink PutBytes(byte[] bytes);    ISink PutBool(bool b);        ISink PutShort(short s);    ISink PutInt(int i);    ISink PutString(string s, Encoding encoding);    ISink PutObject<T>(T obj, Funnel<T> funnel);    /// ... 其他 built-in 类型,读者可自行补充}

简单的 Funnel 实现如下所示:

public class Funnels{    public static Funnel<string> StringFunnel = (from, sink) =>        sink.PutString(from, Encoding.UTF8);        public static Funnel<int> IntFunnel = (from, sink) =>        sink.PutInt(from);}

自定义复杂类型的 Funnel 实现则可以数据拆解分批写入 sink。复杂类型的实例成员依旧可能是复杂类型,因此我们要在 Sink 上实现一个 PutObject 来提供套娃式拆解。

Funnel<Foo> funnelFoo = (foo, sink) =>{    sink.PutString(foo.A, Encoding.UTF8);    sink.PutInt(foo.B);        Funnel<Bar> funnelBar = (bar, barSink) => barSink.PutBool(bar.C);    sink.PutObject(foo.Bar, funnelBar);};class Foo{    public string A { get; set; }    public int B { get; set; }    public Bar Bar { get; set; }}class Bar{    public bool C { get; set; }}

Sink 的实现#

Sink 的核心是 byte 数组缓冲区的实现,利用 ArrayPool 我们可以很方便的实现一个 ByteBuffer。

class ByteBuffer : IDisposable{    private readonly int _capacity;    private readonly byte[] _buffer;    private int _offset;    private bool _disposed;    public ByteBuffer(int capacity)    {        _capacity = capacity;        _buffer = ArrayPool<byte>.Shared.Rent(capacity);    }    public void Put(byte b)    {        CheckInsertable();        _buffer[_offset] = b;        _offset++;    }    public void Put(byte[] bytes)    {        CheckInsertable();        bytes.CopyTo(_buffer.AsSpan(_offset, bytes.Length));        _offset += bytes.Length;    }    public void PutInt(int i)    {        CheckInsertable();        BinaryPrimitives.WriteInt32BigEndian(GetRemainingAsSpan(), i);        _offset += sizeof(int);    }        public void PutShort(short s)    {        CheckInsertable();        BinaryPrimitives.WriteInt32BigEndian(GetRemainingAsSpan(), s);        _offset += sizeof(short);    }    // ... 其他的 primitive type 的实现    public Span<byte> GetBuffer() =>        _buffer.AsSpan(.._offset);    public bool HasRemaining() => _offset < _capacity;    public void Dispose()    {        _disposed = true;        ArrayPool<byte>.Shared.Return(_buffer);    }    private void CheckInsertable()    {        if (_disposed)        {            throw new ObjectDisposedException(typeof(ByteBuffer).FullName);        }        if (_offset >= _capacity)        {            throw new OverflowException("Byte buffer overflow");        }    }    private Span<byte> GetRemainingAsSpan() => _buffer.AsSpan(_offset..);}

Sink 则是对 ByteBuffer 的进一步封装,来适配当前使用场景。

class Sink : ISink, IDisposable{    private readonly ByteBuffer _byteBuffer;    /// <summary>    /// 创建一个新的 <see cref="Sink"/> 实例    /// </summary>    /// <param name="expectedInputSize">预计输入的单个元素的最大大小</param>    public Sink(int expectedInputSize)    {        _byteBuffer = new ByteBuffer(expectedInputSize);    }    public ISink PutByte(byte b)    {        _byteBuffer.Put(b);        return this;    }    public ISink PutBytes(byte[] bytes)    {        _byteBuffer.Put(bytes);        return this;    }    public ISink PutBool(bool b)    {        _byteBuffer.Put((byte)(b ? 1 : 0));        return this;    }    public ISink PutShort(short s)    {        _byteBuffer.PutShort(s);        return this;    }    public ISink PutInt(int i)    {        _byteBuffer.PutInt(i);        return this;    }    public ISink PutString(string s, Encoding encoding)    {        _byteBuffer.Put(encoding.GetBytes(s));        return this;    }    public ISink PutObject<T>(T obj, Funnel<T> funnel)    {        funnel(obj, this);        return this;    }    public byte[] GetBytes() => _byteBuffer.GetBuffer().ToArray();    public void Dispose()    {        _byteBuffer.Dispose();    }}

k 个 Hash 函数与 布隆过滤器 实现#

上文提到了 布隆过滤器 通过 k 个 hash 函数来解决 hash 冲突问题。实践中,我们可以把一次 murmur hash 的计算结果(16 byte)拆分为两部分并转换为 long 类型(一个 long 是 8 byte)。

这两部分结果分别保存到 hash1 和 hash2,第 k 个 hash 函数是对 hash1 和 hash2 的重新组合。

hash(k) = hash1 + (k-1) * hash2

public class BloomFilter<T>{    private readonly int _hashFunctions;    private readonly Funnel<T> _funnel;    private readonly int _expectedInputSize;    private readonly Bitmap _bitmap;    private readonly HashAlgorithm _murmur128;    /// <summary>    /// 创建一个新的 <see cref="BloomFilter"/> 实例    /// </summary>    /// <param name="funnel">与插入元素类型相关的<see cref="Funnel"/>的实现</param>    /// <param name="buckets">BloomFilter 内部 Bitmap 的 bucket 数量,越大,误判率越低</param>    /// <param name="hashFunctions">hash 函数的数量,越多,误判率越低</param>    /// <param name="expectedInputSize">预计插入的单个元素的最大大小</param>    public BloomFilter(Funnel<T> funnel, int buckets, int hashFunctions = 2, int expectedInputSize = 128)    {        _hashFunctions = hashFunctions;        _funnel = funnel;        _expectedInputSize = expectedInputSize;        _bitmap = new Bitmap(buckets);        _murmur128 = MurmurHash.Create128(managed: false);    }    public void Add(T item)    {        long bitSize = _bitmap.Capacity;        var (hash1, hash2) = Hash(item);        long combinedHash = hash1;        for (int i = 0; i < _hashFunctions; i++)        {            _bitmap.Set((combinedHash & long.MaxValue) % bitSize);            combinedHash += hash2;        }    }    public bool MightContains(T item)    {        long bitSize = _bitmap.Capacity;        var (hash1, hash2) = Hash(item);        long combinedHash = hash1;        for (int i = 0; i < _hashFunctions; i++)        {            if (!_bitmap.Get((combinedHash & long.MaxValue) % bitSize))            {                return false;            }            combinedHash += hash2;        }        return true;    }    [MethodImpl(MethodImplOptions.AggressiveInlining)]    private (long Hash1, long Hash2) Hash(T item)    {        byte[] inputBytes;        using (var sink = new Sink(_expectedInputSize))        {            sink.PutObject(item, _funnel);            inputBytes = sink.GetBytes();        }        var hashSpan = _murmur128.ComputeHash(inputBytes).AsSpan();        long lowerEight = BinaryPrimitives.ReadInt64LittleEndian(hashSpan.Slice(0,8));        long upperEight = BinaryPrimitives.ReadInt64LittleEndian(hashSpan.Slice(8,8));        return (lowerEight, upperEight);    }}

扩展

带计数器的布隆过滤器#

上文讲到基于 Bitmap 实现的布隆过滤器不支持删除,但如果把 Bitmap 这个 bit 数组换成 n 个 bit 作为一个bucket的数组,那单个 bucket 就具备了计数能力。这样删掉一个元素的时候,就是在这个计数器上减一,借此能够在有限的范围内实现带删除功能的布隆过滤器,代价是,存储空间会变成原来的 n 倍。

分布式布隆过滤器实现方案#

如果你有布隆过滤器的实际使用需求,并且是在分布式环境,笔者推荐下面这个库,它是作为 redis 的插件提供的,详情点击下方链接。
https://github.com/RedisBloom/RedisBloom

代码地址

为方便学习,本文所有的代码均已整理在 github:https://github.com/eventhorizon-cli/EventHorizon.BloomFilter


从位图到布隆过滤器,C#实现

从位图到布隆过滤器,C#实现前言本文将以 C# 语言来实现一个简单的布隆过滤器,为简化说明,设计得很简单,仅供学习使用。感谢@时总百忙...
点击下载文档
确认删除?
回到顶部
客服QQ
  • 客服QQ点击这里给我发消息